7 research outputs found

    Comparative Analysis of Machine Learning Techniques for the Classification of Knee Abnormality

    Get PDF
    Knee abnormality is a major problem in elderly people these days. It can be diagnosed by using Magnetic Resonance Imaging (MRI) or X-Ray imaging techniques. X-Ray is only used for primary evaluation, while MRI is an efficient way to diagnose knee abnormality, but it is very expensive. In this work, Surface EMG (sEMG) signals acquired from healthy and knee abnormal individuals during three different lower limb movements: Gait, Standing and Sitting, were used for classification. Hence, first Discrete Wavelet Transform (DWT) was used for denoising the input signals; then, eleven different time-domain features were extracted by using a 256 msec windowing with 25% of overlapping. After that, the features were normalized between 0 (zero) to 1 (one) and then selected by using the backward elimination method based on the p-value test. Five different machine learning classifiers: K-nearest neighbor, support vector machine, decision tree, random forest and extra tree, were studied for the classification step. Our result shows that the Extra Tree Classifier with ten cross-validations gave the highest accuracy (91%) in detecting knee abnormality from the sEMG signals under analysis. (c) 2020 IEEE

    Human knee abnormality detection from imbalanced sEMG data

    Get PDF
    The classification of imbalanced datasets, especially in medicine, is a major problem in data mining. Such a problem is evident in analyzing normal and abnormal subjects about knee from data collected during walking. In this work, surface electromyography (sEMG) data were collected during walking from the lower limb of 22 individuals (11 with and 11 without knee abnormality). Subjects with a knee abnormality take longer to complete the walking task than healthy subjects. Therefore, the SEMG signal length of unhealthy subjects is longer than that of healthy subjects, resulting in a problem of imbalance in the collected sEMG signal data. Thus, the development of a classification model for such datasets is challenging due to the bias towards the majority class in the data. The collected sEMG signals are challenging due to the contribution of multiple motor units at a time and their dependency on neuromuscular activity, physiological and anatomical properties of the involved muscles. Hence, automated analysis of such sEMG signals is an arduous task. A multi-step classification scheme is proposed in this research to overcome this limitation. The wavelet denoising (WD) scheme is used to denoise the collected sEMG signals, followed by the extraction of eleven time-domain features. The oversampling techniques are then used to balance the data under analysis by increasing the training minority class. The competency of the proposed scheme was assessed using various computational classifiers with 10 fold cross-validation. It was found that the oversampling techniques improve the performance of all studied classifiers when applied to the studied imbalanced sEMG data. (c) 2021 Elsevier Lt

    Operation of Circuit Breaker with the help of Password

    Full text link
    A circuit breaker is an electrical switch use to protect an electrical circuit from damage caused by faults. Its basic function is to detect a fault condition and protect from it. Fuse operates once after that it must be replaced but a circuit breaker can be reset to resume normal condition. During the manual operation, we see inoperable electrical accidents to the line man are rises during maintenance due to improper communication between the maintenance staff and the substation staff. In order to prevent such accidents, password based circuit breaker is design so that only authentic person can operate it with a password. There is also a facility of changing the password. The system is fully controlled by the microcontroller. The password is saved in an EEPROM, interfaced to the microcontroller and the password can be changed any time. A keypad is used to submit the password and a relay to operate circuit breaker, which is indicated by a bulb. Any wrong attempt to open the circuit breaker by entering the wrong password an alert will be shown in the LCD

    Hybrid Deep Learning Approaches for sEMG Signal-Based Lower Limb Activity Recognition

    No full text
    Lower limb activity recognition utilizing body sensor data has attracted researchers due to its practical applications, such as neuromuscular disease detection and kinesiological investigations. The employment of wearable sensors including accelerometers, gyroscopes, and surface electromyography has grown due to their low cost and broad applicability. Electromyography (EMG) sensors are preferable for automated control of a lower limb exoskeleton or prosthesis since they detect the signal beforehand and allow faster movement detection. The study presents hybrid deep learning models for lower limb activity recognition. Noise is suppressed using discrete wavelet transform, and then the signal is segmented using overlapping windowing. Convolutional neural network is used for temporal learning, whereas long short-term memory or gated recurrent unit is used for sequence learning. After that, performance indices of the models such as accuracy, sensitivity, specificity, and F-score are calculated. The findings indicate that the suggested hybrid model outperforms the individual models
    corecore